Quasi-Polish Spaces
نویسنده
چکیده
We investigate some basic descriptive set theory for countably based completely quasi-metrizable topological spaces, which we refer to as quasi-Polish spaces. These spaces naturally generalize much of the classical descriptive set theory of Polish spaces to the non-Hausdorff setting. We show that a subspace of a quasi-Polish space is quasi-Polish if and only if it is Π2 in the Borel hierarchy. Quasi-Polish spaces can be characterized within the framework of Type-2 Theory of Effectivity as precisely the countably based spaces that have an admissible representation with a Polish domain. They can also be characterized domain theoretically as precisely the spaces that are homeomorphic to the subspace of all non-compact elements of an ω-continuous domain. Every countably based locally compact sober space is quasi-Polish, hence every ω-continuous domain is quasi-Polish. A metrizable space is quasi-Polish if and only if it is Polish. We show that the Borel hierarchy on an uncountable quasi-Polish space does not collapse, and that the Hausdorff-Kuratowski theorem generalizes to all quasi-Polish spaces.
منابع مشابه
A generalization of a theorem of Hurewicz for quasi-Polish spaces
We identify four countable topological spaces S2, S1, SD, and S0 which serve as canonical examples of topological spaces which fail to be quasi-Polish. These four spaces respectively correspond to the T2, T1, TD, and T0-separation axioms. S2 is the space of rationals, S1 is the natural numbers with the cofinite topology, SD is an infinite chain without a top element, and S0 is the set of finite...
متن کاملOn the commutativity of the powerspace constructions
We investigate powerspace constructions on topological spaces, with a particular focus on the category of quasi-Polish spaces. We show that the upper and lower powerspaces commute on all quasi-Polish spaces, and show more generally that this commutativity is equivalent to the topological property of consonance. We then investigate powerspace constructions on the open set lattices of quasi-Polis...
متن کاملWadge-like reducibilities on arbitrary quasi-Polish spaces
The structure of the Wadge degrees on zero-dimensional spaces is very simple (almost well-ordered), but for many other natural non-zerodimensional spaces (including the space of reals) this structure is much more complicated. We consider weaker notions of reducibility, including the so-called ∆ 0 α-reductions, and try to find for various natural topological spaces X the least ordinal αX such th...
متن کاملNoetherian Quasi-Polish spaces
In the presence of suitable power spaces, compactness ofX can be characterized as the singleton {∅} being open in the space A(X). Equivalently, this means that universal quantification over a compact space preserves open predicates. Using the language of represented spaces, one can make sense of notions such as a Σ 2 subset of the space of Σ 2 -subsets of a given space. This suggests higher-ord...
متن کاملBorel and Hausdorff Hierarchies in Topological Spaces of Choquet Games and Their Effectivization
What parts of classical descriptive set theory done in Polish spaces still hold for more general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question has been addressed by Victor Selivanov in a series of papers centered on algebraic domains. And recently it has been considered by Matthew de Brecht for quasi-Polish spaces, a framework that contains both countably...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 164 شماره
صفحات -
تاریخ انتشار 2013